The feedback mechanisms in climate-biosphere coupling leading to species extinction in large ecosystems

Ivan Sudakov (March 29, 2019)

Please install the Flash Plugin


We propose a model of multispecies populations surviving on distributed resources. System dynamics are investigated under changes in abiotic factors such as the climate, as parameterized through environmental temperature. In particular, we introduce a feedback between species abundances and resources via abiotic factors. This model is apparently the first of its kind to include a feedback mechanism coupling climate and ecosystem dynamics. The model explains the coexistence of many species, yet also displays the possibility of catastrophic bifurcations, where all species become extinct under the influence of abiotic factors. Also, we consider the dynamic model with random parameters for the climate-biosphere coupling to explain why the climate may stay stable over long-time intervals even if mass extinction in large ecosystems frequently occurs. The model shows that climate stability can be explained by mutual annihilation of many independent factors. One of the important consequences is that if biodiversity decreases then the random evolution of the biosphere can lead to global climate changes.