Investigating the Impact of Asymptomatic Carriers on COVID-19 Transmission

Juan B. Gutierrez (May 5, 2020)

Please install the Flash Plugin


Jacob B Aguilar, PhD, Saint Leo University.
Jeremy Samuel Faust, MD, Brigham and Women's Hospital
Lauren M. Westafer, MD, University of Massachusetts, Medical School-Baystate
Juan B. Gutierrez, PhD, University of Texas at San Antonio

It is during critical times when mathematics can shine and provide an unexpected answer. Coronavirus disease 2019 (COVID-19) is a novel human respiratory disease caused by the SARS-CoV-2 virus. Asymptomatic carriers of the virus display no clinical symptoms but are known to be contagious. Recent evidence reveals that this sub-population, as well as persons with mild, represent a major contributor in the propagation of COVID-19. The asymptomatic sub-population frequently escapes detection by public health surveillance systems. Because of this, the currently accepted estimates of the basic reproduction number (Ro) of the virus are too low. In this talk, we present a traditional compartmentalized mathematical model taking into account asymptomatic carriers, and compute Ro exactly. Our results indicate that an initial value of the effective reproduction number could range from 5.5 to 25.4, with a point estimate of 15.4, assuming mean parameters. It is unlikely that a pathogen can blanket the planet in three months with an Ro in the vicinity of 3, as reported in the literature; in fact, no other plausible explanation has been offered for the rapid profession of this disease. This model was used to estimate the number of cases in every county in the USA.