MBI Videos

Workshop 6 : Ocean Ecologies and their Physical Habitats in a Changing Climate

  • video photo
    Stephen Ackley
    No description available.
  • video photo
    Antonios Zagaris
    In this talk, we will present analytic results concerning phytoplankton growth under nutrient-light co-limitation. The model we employ consists of two reaction-advection-diffusion PDEs for the plankton and nutrient concentrations and incorporates self-shading effects.

    In the first part of this talk, we will work with a single spatial dimension (depth) and look closely into the linear stability problem for the trivial steady state (no phytoplankton). Using our results, we will identify the emergence of two distinct localized patterns: benthic layers (BLs), corresponding to the localization of plankton close to the bottom of the water column, and deep-chlorophyll maxima (DCMs), corresponding to localization in a thin region interior to the water column. This first part will close with an ecological interpretation of our findings.

    In the second half, we will extend our model to account for an extra, horizontal dimension and include diffusion and (depth-dependent) advection along this new dimension. We will then investigate the corresponding linear stability problem and derive a condition for the relative sizes of horizontal diffusivity and advection, under which horizontally modulated DCMs may be expected to appear.
  • video photo
    Jean-Louis Tison
    No description available.
  • video photo
    Patricia Yager
    No description available.
  • video photo
    Emily Shuckburgh
    Part 2 of a two-part introduction to the mathematics of ocean dynamics, transport and mixing.
  • video photo
    Leonid Polyak
    The Arctic environment is experiencing a rapid change due to the ongoing climate warming, with an especially high rate of temperature increase in the Arctic. The core of this change is the cryosphere destruction: an abrupt decrease in sea ice extent and volume, intensified glacier melting, and degradation of the permafrost. These processes profoundly affect the entire Arctic natural system including cascading effects on the Arctic Ocean food web. Recent years have witnessed changes in biogeochemical cycling and primary production patterns in various parts of the Arctic Ocean and intrusions of low-latitude biota into the high Arctic. For a proper evaluation of these changes and their future projection, they need to be considered in the context of long-term development of the Arctic environments beyond the scope of historical observations. Sediments from the Arctic Ocean floor hold the long-time archive of the history of sea ice, oceanic circulation, and related biological conditions. Investigation of sediment cores collected from multiple sites across the Arctic Ocean provide insights into paleoceanographic variations during the last several 100,000 years, with a yet longer-time record now available from a central Arctic Ocean site. In this talk I will give an overview of these geological studies with a focus on implications for the development of sea ice and effects on the Arctic Ocean biota.
  • video photo
    Emily Shuckburgh
    Part 1 of a two-part introduction to the mathematics of ocean dynamics, transport and mixing.
  • video photo
    Bruno Delille
    No description available.
  • video photo
    Alan Hastings
    Panel discussion with morning speakers David Thomas and Alan Hastings
  • video photo
    Keith Lindsay
    No description available
  • video photo
    Arjen Doelman, Walker Smith, Walker Smith
    No description available.
  • video photo
    Ariane Verdy
    The size of phytoplankton cells determines their competitive ability, sinking rate, and potential to export carbon to the deep ocean. Observations suggest that small phytoplankton species dominate the equatorial and subtropical oceans while larger species are more abundant in subpolar regions. To understand this pattern, we have developed an allometric model for the evolution of phytoplankton cell size. The model shows that increasing body size can be a successful adaptation, even in the absence of temporal variability or predation. The evolutionarily stable strategy is set by the allometric relationships for nutrient uptake kinetics and by metabolism. In a simple chemostat model, fluctuations in resource supply increase the optimal cell size. I will discuss the organization of phytoplankton communities along a latitudinal gradient in nutrient supply, sea surface temperature, and insolation.
  • video photo
    Arjen Doelman
    No description available....
  • video photo
    Walker Smith
    No description available....
  • video photo
    Nicole Lovenduski, Jean-Louis Tison, Jean-Louis Tison
    No description available.
  • video photo
    Stephen Ackley, Ken Golden
    No description available.
  • video photo
    Nicholas Record
    Pelagic copepods are the dominant mesozooplankton in much of the world's oceans. They form a crucial link in the transfer of energy from primary production to upper trophic levels, and they are a significant contributor to vertical carbon flux through migration and fecal pellets. Much effort has gone into studying the effects of climate change on individual species. The effects of changing conditions on communities and assemblages are not as well understood. Answering this kind of question requires the development of a more general mathematical framework. Copepod morphologies are very similar across species. Differences between species are better described by how life history strategies are parameterized. By formulating these strategies with mechanistic equations, we can build a copepod model that is general enough to describe a wide range of species. Each species is represented by a digital chromosome of parameters, so that different sets of parameter values map to different species. This framework allows us to span scales from individually-based processes to system level properties such as biodiversity and size spectra. We can explore how temperature, resource availability, and mortality regimes structure modeled copepod communities.
  • video photo
    Isaac Klapper
    No description available.
  • video photo
    Alan Hastings
    Some underlying issues of modeling in ecology
    2 species predator prey dynamics and analysis
    Aquatic ecological systems - basic issues
    NPZ modeling basics
    NPZ "applications" and extensions
  • video photo
    Irina Marinov
    Climate driven changes to the physical structure of the ocean will modify oceanic temperature, light, and nutrients, essential ingredients for the growth of ocean phytoplankton. In turn, resulting changes in phytoplankton growth and community structure will affect export production, deep ocean carbon storage, and ultimately atmospheric carbon.
    The questions I work on at present are: How will changes in temperature, light and nutrients affect phytoplankton growth rates and biomass and will they impact more the small phytoplankton or the large phytoplankton? What will be the resulting consequences for biological production and the carbon cycling in the ocean?
    I propose from theoretical arguments a " critical nutrient hypothesis " , i.e. that in the low nutrient regions roughly corresponding to 40S 40N, future nutrient decreases due to increasing stratification will affect more small phytoplankton biomass than diatoms, with consequences for export production and the carbon cycle. I expect the opposite behavior in the high nutrient high latitudes, with future nutrient decreases affecting more diatoms than small phytoplankton. More broadly, I propose an analytical framework linking changes in nutrients, light and temperature with changes in phytoplankton biomass and assess these theoretical considerations against coupled model projections (1980-2100) from one of the leading US IPCC-class Earth System models, the NCAR CCSM3.1.
  • video photo
    David Thomas
    No description available.
  • video photo
    Keith Promislow
    No description available.
  • video photo
    Lonnie Thompson
    No description available.
  • video photo
    Martin Vancoppenolle
    The polar oceans have already experienced significant ecosystem shifts associated with sea ice retreat. Earth system models suggest that major changes in marine ecosystems and biogeochemistry will keep on going through the 21st century. However, future projections of the polar oceans are subject to some of the largest uncertainties. Among the sources of uncertainty is the role of sea ice: Earth system models consider sea ice as biologically inert, while observations indicate active biogeochemistry in sea ice. Hence, developing a realistic sea ice biogechemistry model component seems necessary.

    The fact that sea ice is so prone to microbial life is due to the fact that compared to freshwater ice, sea ice is highly porous. Practically, sea ice can be viewed as a matrix of solid ice with liquid inclusions of brine. Depending on permeability, brine inclusions are connected or not with the underlying ocean. The brine network is ventilated by brine drainage mechanisms, supplying or flushing out nutrients.

    In this presentation, based on observations and models, I will contextualize, explain and show how to model one fundamental aspect of biogeochemistry in sea ice, namely how biogeochemistry in sea ice is coupled with liquid brine dynamics.
  • video photo
    Ken Golden
    No description available.
  • video photo
    Arjen Doelman
    In this talk, we will consider the problem of bifurcating DCMs under nutrient-light co-limitation from a weakly nonlinear point of view. In particular, we will work with the plankton-nutrient model in one spatial dimension introduced in A. Zagaris's talk and investigate the weakly nonlinear stability problem for these bifurcating DCMs.

    The most intriguing mathematical aspect of this problem concerns the existence of an infinite number of eigenvalues tightly clustered around the origin. Although the corresponding modes are latent (non-bifurcating), they have to be included in the analysis as they interact nonlinearly with active (bifurcating) modes.

    We will present explicit asymptotic results valid both close to and far from the bifurcation point, verifying that the bifurcating DCM is stable. Then, we will see that the latent modes have a decisive impact on the dynamics, solely through nonlinear interactions and although a strictly linear point of view dictates that they should be utterly irrelevant. In fact, the bifurcating stable DCM is soon annihilated in a saddle-node bifurcation induced by these latent modes, offering its place to a secondary pattern.

View Videos By