MBI Videos
Lisa Fauci
-
Lisa Fauci
Phytoplankton moving in the ocean, spermatozoa making their way through the female reproductive tract and harmful bacteria that form biofilms on implanted medical devices interact with a surrounding fluid. Their length scales are small enough so that viscous effects dominate inertial effects allowing the resulting fluid dynamics to be described by the linear Stokes equations. However, nonlinear behavior can occur because these structures are flexible and their form evolves with the flow.
In addition, the fluid environment may also be complex because of embedded microstructures that further complicate the dynamics.
We will discuss recent successes and challenges in describing these elastohydrodynamic systems.
-
Lisa FauciThe beating of a cilium is an elegant example of an actuated elastic structure coupled to a surrounding fluid. Computational fluid dynamics enthusiasts will recognize that ciliary systems present many complications such as the interaction of groups of cilia, the influence of boundaries, and the coupling to fluids that have complex rheology and microstructures. Moreover, the ciliary beatform is an emergent feature of these mechanical considerations along with biochemical processes. We will present an overview of current CFD models of cilia, along with some recent progress in analyzing fluid mixing by cilia and modeling ciliary penetration of a mucus layer.
-
Lisa Fauci
The process of fertilization in mammalian reproduction provides a rich example of fluid-structure interactions. Spermatozoa encounter complex, non-Newtonian fluid environments as they make their way through the cilia-lined, contracting conduits of the female reproductive tract. The beat form realized by the flagellum varies tremendously along this journey due to mechanics and biochemical signaling. We will present recent progress on integrative computational models of pumping and swimming in both Newtonian and complex fluids that capture elements of this complex dynamical system.