MBI Videos
Lena Ting
-
Lena Ting
Proprioceptive sensory information is essential to movement, particularly in sensorimotor responses to external perturbations to the body. Our data show that rapid increase in resistive force of a passive muscle when stretched, i.e. short-range stiffness may cause enhanced sensory signals that facilitate the detection and predictive response to sudden mechanical perturbations to the body. Importantly, this history-dependent property of muscle spindle firing rates does not have a unique relationship to muscle length or velocity, but rather can be predicted in fine detail based on a unique pseudo-linear transformation between muscle force and the first time derivative of force, dF/dt and muscle spindle afferent firing rate. Several history-dependent features of muscle spindle firing rates can be predicted based on muscle force and dF/dt and are likely due to cross-bridge cycling kinetics in muscle fibers. Such history-dependence is lacking in current models of muscle spindles, but could be necessary to explain a number of phenomena from postural response to perturbation, spasticity, and perception of limb position. Moreover, the encoding of force as a proxy for length in muscle spindles has many implications for normal and impaired control of movement.